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Fatigue Debonding Characterization in Composite Skin/Stringer

Configurations

Michael K. Cvitkovich 1, T. Kevin O'Brien z and Pierre J. Minguet 3

ABSTRACT: The objective of this work was to investigate the fatigue damage mechanisms and

to identify the influence of skin stacking sequence in carbon epoxy composite bonded skin/stringer

constructions. A simple 4-point-bending test fixture originally designed for previously performed

monotonic tests was used to evaluate the fatigue debonding mechanisms between the skin and the

bonded frame when the dominant loading in the skin is flexure along the edge of the frame. The

specimens consisted of a tapered flange, representing the stringer, bonded onto a skin. Based on

the results of previous monotonic tests two different skin lay-ups in combination with one flange

lay-up were investigated. The tests were performed at load levels corresponding to 40%, 50%,

60%, 70% and 80% of the monotonic fracture loads. Microscopic investigations of the specimen

edges were used to document the onset of matrix cracking and delamination, and subsequent

fatigue delamination growth. Typical damage patterns for both specimen configurations were

identified. The observations showed that failure initiated near the tip of the flange in the form of

matrix cracks at one of two locations, one in the skin and one in the flange. The location of the 90 °

flange and skin plies relative to the bondline was identified as the dominant lay-up feature that

controlled the location and onset of matrix cracking and subsequent delamination. The fatigue

delamination growth experiments yielded matrix cracking and delamination onset as a function of

fatigue cycles as well as delamination length as a function of the number of cycles.
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Introduction

One of the major objectives of today's aircraft industry is the reduction of manufacturing

costs without loss, or with even an increase, in quality and reliability. One of the many approaches

to achieve this goal is the simplification of the production processes. Composite structures have

already proven to be very cost-effective due to theft lightweight design. These structures are also

very attractive since secondary bonding or co-curing may replace mechanical fastening methods,

and reduce component assembly time.

As of today, little data exist on the mechanical capabilities of bonded skin/stringer structures.

First investigations have been performed on the effects of pressure loading on a state-of-the-art

composite materials bonded fuselage panel [1]. Due to flexure along the edge of the frame (see Fig.

1), shear stresses and moments along the frame length were identified as potentially critical loading

conditions very likely to result in structural failure. Experiments under monotonic loading

conditions were carried out utilizing a modified frame pull-off test with specimens cut from a

full-size panel. The major drawback of this test methodology is the expensive production of the

pull-off specimens and the complex test setup.

Based on these results, a new test methodology for analyzing the failure mechanisms at the

skin/stringer interface has recently been introduced [2, 3]. Comparatively simple specimens

consisting of a flange bonded onto a skin were tested in three- and four-point bending fixtures. It

was shown in experiments with monotonic loading that failure initiated at the tip of the flange,

identical to the failure mode in complex specimens tested in Reference 1. Depending on specimen

lay-up, delaminations were reported to propagate at two different locations, either in the flange or

in the skin [3]. A later examination of the specimens tested under monotonic loading revealed that

in one specimen configuration debonding also occurred between the flange and the skin within the

bondline.

To obtain a more complete understanding of skin/stringer debonding mechanisms, it is vital

to perform fatigue tests along with the monotonic experiments to establish the durability of these

bonded joints over the anticipated life cycle. Unfortunately, no such data are available in the



literature.Therefore,theobjectiveof this investigationwasto shedmorelight ontofatigue

skin/stringerdebondfailure.Four-pointbendingfatiguetestswerecarriedoutusingthesame

specimenconfigurationsandfixturesusedin References2 and3. Two specimenconfigurations

with thesameflangelay-upbutwithdifferentskinlay-upswereinvestigatedto evaluatethe

influenceof theply stackingsequenceon thefracturemodenearthebondline.

Materials and Specimen Preparation

The specimens for fatigue loading were identical to the specimens used in previous

monotonic tests [2, 3] They were machined from the same panels and consisted of a bonded skin

and flange assembly shown in Fig. 2. To study the influence of skin lay-up only, two skin

laminates, labeled S1 and $3, and one flange laminate, labeled F1, were combined to give two

specimen configurations, A and D (see Table 1). The terms S1, $3, F1, A and D were chosen in

accordance with the nomenclature used for monotonic testing [3]. Two panels of each

configuration were produced. Both the skin and the flange laminates had a multidirectional lay-up,

containing 0 °, 90 °, +45 ° and -45 ° plies. Moreover, the skin lay-ups were chosen to give an almost

identical bending stiffness, Dll. Laminate characteristics and 0 ° ply material properties are

summarized in Tables 1 and 2, respectively.

Both the skin and flange were made from IM6/3501-6 graphite/epoxy prepreg tape with a

nominal ply thickness of 0.188 mm. First, the flange and skin laminates were cured separately.

The flange parts were then cut into 50 mm long strips and machined with a 27 ° taper along the

edges. Subsequently, the flange was adhesively bonded to the skin using a 177 °C cure film

adhesive from America Cyanamid (CYTEC 1515). A grade 5 film was used to yield a nominally

0.127 mm thick bondline. However, because some of the adhesive flowed outwards during cure,

the actual bondline thickness was 0.102 mm. Moreover, one panel of configuration D showed ply

waviness and ply drops on one flange side due to fabrication imperfections as shown in Fig. 3. A

diamond saw was used to cut the panels into 25 mm wide by 127 mm long specimens. The

specimen dimensions are shown in Fig. 2a).



Experimental Procedure

The same four-point bending test configuration used for monotonic testing was employed to

perform the fatigue tests [2, 3]. A schematic of the test fixture is shown in Fig. 2b). The bottom

support had a 102 mm span, while the upper fixture had a 76 mm span. Mid-span deflection was

recorded using a spring loaded direct current displacement transducer (DCDT) contacting the center

of the frame flange as shown in Fig. 2b). The experiments were performed in a servohydraulic

load frame in load control at a cyclic frequency of 5 Hz and an R-ratio of 0.1. From the monotonic

tests a load, Pnt, was determined at which the load versus stroke curves deviated slightly from the

initial linear slope [3]. The average value of Phi for the monotonic tests was found to be 1470 N

for configuration A and 1220 N for configuration D. It was assumed that at this load level possible

damage initiation may occur. When comparing different test configurations or when dealing with

structural components, calculating the bending moment in the skin at the tip of the flange has been

shown to be a better way of analyzing the data [1]. Since only one test configuration was used in

the present investigation the data are still displayed in terms of load. However, for reasons of

comparison the bending moment at the tip of the flange may easily be calculated as (P,a/2) times

the moment arm of 12.7 mm.

For each configuration, fatigue tests were run at load levels corresponding to 40%, 50%,

60%, 70% and 80% of the load. Two tests were performed at the five levels with the exception of

40%, where only one specimen was tested. The cyclic loading was stopped at fixed intervals

depending on the load level, and a photograph of the polished specimen edge was taken under a

light microscope to document the occurrence and growth of matrix cracks and delaminations. Table

3 lists the schedule used to obtain photographs for each cyclic load level. Damage was documented

based on location at each of the four comers identified in Fig. 4. The specimens were clamped into

a three-point bending rig as shown in Fig. 5 and a small load was applied by hand tightening a set

screw while the specimen and rig were placed under the microscope to open the matrix cracks and

delaminations slightly, thereby increasing the visibility of the damage. Furthermore, at each

interval the specimens were loaded monotonically to the mean load, and a plot of load versus mid-



spandeflectionwasrecordedusinganX-Y plotter. As damage was initiated the specimen

compliance, given by the slope of the plot, increased. Tests run at 40%, 50% and 60% were

terminated at 1 000 000 (one million) cycles. Unless specified otherwise in the text, tests at 70%

and 80% were terminated at 100 000 cycles. To investigate the influence of the fabrication

imperfections in one panel of configuration D, two additional specimens were cut from that panel

and were tested at load levels of 70% and 80% of Phi.

Results and Discussion

Specimen Configuration A

In Fig. 6, results of configuration A are summarized for the two replicate specimens at each

load level as a plot of the number of cycles to the onset of matrix cracking and subsequent

delamination. In some cases, a left hand arrow indicates damage initiation within the first 100

cycles. At a load level of 40%, a right hand arrow shows that no delaminations occurred within the

test period of 1 000 000 cycles. The loads at onset of damage obtained from the monotonic tests

are shown at the ordinate. These data points represent a load level of 100% of Pnt. A clear

distinction between matrix cracking and delamination onset can be observed from the plot.

Furthermore, a linear relationship between Pmax and log N exists for each event, with very little

scatter between the two replicates tested at each load level. The number of cycles between onset of

matrix cracking and delamination covers a little over one order of magnitude for all load levels

investigated. A linear extrapolation of the fatigue data for matrix cracking onset and delamination

onset suggests that no time delay exists between matrix cracking and delamination formation

during monotonic loading. This is also consistent with the results at the highest fatigue load level

(80%) where both events occurred within the same observation period.

Typical damage patterns observed in specimens of configuration A are shown in Fig. 7.

These drawings are based on the microscopic investigation performed during the tests. As shown

in Fig. 7a), initial matrix cracks formed first at comers 2 and 3, typically in the 90 ° flange ply as



described in Reference 3. They initiated further matrix cracks in the lower 45 ° flange ply.

Subsequently, delaminations (labeled "B" for bondline failures) formed from these matrix cracks.

These "B" delaminations ran to one side of the interface between the bondline and the composite,

usually the top skin ply interface. The first delamination always corresponded to the first matrix

crack that formed. They were followed by delaminations between plies (labeled "P") at corners 1

and 4. In some specimens, the "P" delaminations initiated in the -450/90 ° flange ply interface with

no matrix crack, whereas, in other specimens they initiated from matrix cracks in the 90 ° flange

ply. Both scenarios are displayed in Fig. 7b). "P" delaminations always resulted in a delamination

running in the 900/45 ° flange ply interface. Each flange side (side 1 = corners 1 and 2, side 2 =

corners 3 and 4) consisted of a "P" and a "B" delamination. At each flange side, the "P"

delaminations started later than the corresponding "B" delaminations, but almost immediately

equaled or exceeded them in length. As the "P" delaminations grew, they would tend to arrest and

form new matrix cracks branching into the bottom 45 ° flange ply (see Fig. 7b)). These matrix

cracks always stopped at the bondline. After the matrix crack had formed the delamination would

start to grow again. Delaminations arrested only beyond the tapered region of the flange. No

branching into the skin ply or into the bondline was observed. As an example, Figures 8 and 9

show micrographs of a configuration A specimen tested at 80% of P,,I exhibiting typical "B" and

"P" damage patterns.

In Figures 10 to 17, the results are shown as plots of delamination length (see Fig. 7 for

definition) versus the number of cycles for each load level for the configuration A specimens with

delaminations. At a maximum load, Pmax, of 80% of Pnt (see Fig. 10 and Fig. 11), matrix cracks

and delaminations had formed within the first 100 cycles in both specimens. The tests were

terminated at crack lengths of about 20 mm, corresponding to almost total debonding of the flange

from the skin. At Pmax of 70% of P,,t (see Fig. 12 and Fig. 13), matrix cracks also formed within

the first 100 cycles in both specimens. As delaminations grew from all four corners, delaminations

on side 1 tended to slow down while delaminations on side 2 continued to grow until the tests were

terminated. At Pmax of 60% of P,,I (see Fig. 14 and Fig. 15), matrix cracks formed in all



specimenswithin thefirst 1000cycles.Delaminationsonside2grewfasterthandelaminationson

side1.At Pmax of 50% of P,,l (see Fig. 16 and Fig. 17), matrix cracks formed first between 4 000

and 6 000 cycles in the 90 ° flange ply closest to the skin, initiating a single delamination in the

bondline of each specimen after 100 000 cycles. In one specimen, the delamination formed at

corner 3 while in the second specimen it formed at corner 2. At Pmax of 40% of Pnt, only one

specimen was tested. A single transverse matrix crack formed at 45 000 cycles at corner 3 in the

90 ° flange ply closest to the skin. No delaminations formed within one million cycles.

Specimen Configuration D

In Fig. 18, results of configuration D are summarized as a plot of the number of cycles to the

onset of matrix cracking and subsequent delamination. At a load level of 80%, a left hand arrow

indicates matrix cracking within the first 100 cycles. At other load levels, a right hand arrow shows

that no delaminations or matrix cracks occurred within the test period of either 100 000 or

1 000 000 cycles. The loads at onset of damage obtained from the monotonic tests are shown at

the ordinate. These data points represent a load level of 100% of Phi. In contrast to configuration

A, no clear differentiation between matrix cracking and delamination onset is seen as the scatter for

each event is significantly higher. Hence, the data overlap and no delay between those two events

is apparent. The data scatter and the random manner of delamination growth also reflects the higher

scatter compared to configuration A observed in monotonic tests. At the investigated load levels,

the presence of an imperfection in the form of a flange ply drop does not seem to have any

influence on either event. This is shown in Fig. 19, where the data from Fig. 18 are replotted for

onset to matrix cracking only to discriminate between ideal specimens and specimens with flange

ply drop. In one of the two specimens tested at 50% and at 40%, both matrix cracking and

delamination formation could not be observed within the test duration.

Unlike the previous specimen configuration A that was tested, delaminations in specimens of

configuration D propagated in a more random manner. The only consistency found in the damage

patterns is related to the four flange corners (see drawings in Fig. 20).



Transversematrixcrackstypically formedin the90" skinply closestto theflangeat corner1

in all specimensandat corner4 in specimenswith noflangeplydrop("ideal")(seetopsectionof

Fig. 20a)).Subsequently,these90° skinply cracksinitiatedmatrixcracksin the45° ply below,

whichin turninitiateddelaminationsin the45°/0° interface.Oncethedelaminationstartedto grow,

theadhesivepocketalsocracked.However,in thespecimenswith internalply dropsononeflange

side(seeFig. 3andbottomsectionof Fig.20a)),matrixcracksatcorner4 formedfirst in theply

dropregionof thebottom45° or90° flangeply andin thebondlineandtheninitiatedfurthermatrix

cracksanddelaminationsasdescribedabove.Themajorityof thesedelaminationsstayedin the

450/0° interface.In somespecimens,however,thosedelaminationsstartedto split into thetwo0°

pliesatlongercracklengths.Theseeventsarelabeled"split" in Fig. 20.

At corners2 and3, noconsistentcorrelationbetweentheflangeimperfectionsandthe

damagepatternswasobserved.Typically,sometransversematrixcracksformedin the90° skin

plyclosestto theflange,initiatingadelaminationin the90°/45° interfaceasdepictedin thetop

sectionof Fig. 20b).Theothermatrixcracksformedeitherin theflangeply dropregion(not

shown)or in the90° flangeplyclosesttotheskin,initiatingfurthermatrixcracksin thebottom45°

flangeply shownin thebottomsectionof Fig. 20b).Subsequently,ashortdelaminationformedin

thebondline,creatinganothermatrixcrackin the90° topskinply. At theendof thistransverse

crackadelaminationformedin the90°/45° interface.At thispoint,all delaminationsstartedto grow

in a similarmanner.As theypropagated,theywouldtendto arrestandform newmatrixcracks

branchinginto thetop45° skinply. Thesematrixcracksalwaysstoppedat the45°/0° interface.

After thematrixcrackhadformedthedelaminationwouldstarttogrow again.However,

delaminationarrestwasnotrelatedto anypositionwithin thelaminate.As thedelaminationsgrew

further,theystartedto branchinto thelower45°/0° interface(labeled"branch"in Fig. 20),along

with subsequentcracksplittinginto thetwo0° plies.Branchingandsplittingwereeitherdetected

within thesameobservationcycleor occurredwithin afew thousandcyclesof eachother.As an

example,micrographsof aspecimentestedat 80%of Pnt display typical damage patterns in



Figures21and22. In Figures23 to 31, theresultsareshownasplotsof delamination length

versus the number of cycles for each load level for the specimens with delaminations.

At Pmo.x of 80% of Pnl (see Figures 23 to 26), matrix cracks formed first between 100 and

2000 cycles. Subsequently, delaminations formed from these matrix cracks. The first delamination

always corresponded to the first matrix crack that formed. Only in one specimen (D16) were no

branching and splitting found, which is most likely due to the comparatively very short crack

lengths at test termination.

At P,nax of 70% of P,,t (see Figures 27 to 29), matrix cracks formed first between 1 000 and

50 000 cycles. In some cases, delaminations formed from these matrix cracks. For the "ideal"

specimens without a flange ply drop, the f'u'st delamination always corresponded to the first matrix

crack that formed. In one specimen with a flange ply drop, a matrix crack occurred at 1 000 cycles

but did not result in a delamination for the time span investigated. Instead, at 18 000 cycles a

matrix crack and a delamination formed at a different comer. In the second specimen with a flange

ply drop, a single matrix crack occurred at 50 000 cycles. No other matrix cracks and no

delamination formed in this specimen before the test was terminated.

At Pmax of 60% of Phi (see Fig. 30), matrix cracks formed first between 20 000 and 400 000

cycles. In one of the two specimens tested at this load level, delaminations formed from these

matrix cracks. The first transverse matrix crack formed at comer 4. Subsequently, a matrix crack

formed at comer 3 and initiated a delamination in the 900/45 ° interface at 140 000 cycles. At

250 000 cycles another matrix crack formed at comer 4 in the 45 ° ply below the top 90 ° skin ply. It

instantly initiated a delamination in the 450/0 ° interface. In the other specimen, a matrix crack

formed at 400 000 cycles but did not result in a delamination.

At Pmax of 50% of Pnl (see Fig. 31), a single matrix crack and a delamination formed only in

one of the two specimens within the period investigated. In this specimen, the only matrix crack

occurred at 130 000 cycles at comer 3 in the 90 ° skin ply closest to the flange. It resulted in a

delamination in the 900/45 ° interface, forming at 200 000 cycles. No matrix cracks and



delaminations were detected in the second specimen. At Pmax of 40% of Pnt, no matrix cracks and

delaminations formed within one million cycles.

Configuration comparison

In Fig. 32, the two specimen configurations are compared with respect to the onset of matrix

cracking. Matrix cracking typically occurred earlier in configuration A where 90" plies in the flange

were close to the bondline as in configuration D but 90 ° plies in the skin were not. Again, left hand

arrows indicate damage within the In'st 100 cycles, while right hand arrows show that no matrix

cracks were observed within the test period of one million cycles. While specimens of

configuration A show very little scatter, the data for configuration D displays significant variability

at each load level. It is believed that this scatter is related to the transverse tension strength of the

surface 90 ° skin ply. This large variability has also been found in 90 ° flexural fatigue tests

performed in Reference 4.

Another way of comparing the results is to show the number of cycles to delamination onset

once a matrix crack has already formed. This can be established by simply subtracting the number

of cycles to onset of matrix cracking from the number of cycles to delamination onset. The

combined data for configurations A and D are shown in Fig. 33. As pointed out before, in some

cases both events occurred within the in'st 100 cycles or could not be detected until the tests were

terminated. Hence, as no complete information of these damage stages was obtained these data

points have been excluded from the graph. Right hand arrows indicate that matrix cracking

occurred within one million cycles whereas delaminations did not occur. Although both

configurations have been tested at different absolute load levels, there is little difference in the

fatigue response for delamination onset between the two configurations once matrix cracks are

formed. As noted before, with decreasing load levels the number of cycles to delamination onset is

shifted towards higher values. The scatter for the onset of delamination once a matrix crack has

formed in specimens of configuration D is smaller than observed for matrix cracking alone,

indicating that delamination onset is not so sensitive to the skin lay-up.

10



Summary and Conclusions

This paper addresses the fatigue debonding behavior of multidirectional composite

skin/stringer configurations. Two different specimen configurations, A and D, were tested at

various load levels in four-point bending to investigate the influence of skin stacking sequence.

The specimens were examined at discrete time intervals under a light microscope to study the

location of damage onset and subsequent damage progression. The location of the 90 ° skin and

flange plies relative to the bondline was identified as the dominant lay-up feature that controls the

location and onset of matrix cracking and subsequent delamination.

In specimens of configuration A, delaminations always initiated from a matrix crack in the

flange, near the flange tip and then grew at slightly different rates depending on delamination

location (between the flange or skin plies or at the bondline). All three failure modes have also been

observed in monotonic experiments previously performed. For specimen configuration D, matrix

cracks formed either in 90 ° plies in the skin, as reported for monotonic tests, or in the flange. In

both events, damage initiation was again limited to an area near the tip of the flange. Subsequently,

delaminations always grew in the skin, eventually exhibiting branching into lower interfaces and

splitting within 0 ° plies at longer crack lengths. Flange ply drops due to fabrication imperfections

observed in some specimens did not result in different damage patterns.

As expected, damage onset and propagation was shifted towards higher lifetimes as load

levels decreased. At 40% of the monotonic failure initiation load no damage progression could be

observed in either configuration within the test period of one million cycles. Again, specimens cut

from laminates with flange ply drops due to manufacturing imperfections did not exhibit different

fatigue crack growth behavior. Matrix cracking typically occurred earlier in configuration A where

90 ° plies in the flange were close to the bondline but 90 ° plies in the skin were not. However, a

comparison of both configurations shows that the number of cycles to delamination onset once

matrix cracks are present does not strongly depend on skin lay-up. The comparatively high scatter

in the fatigue data for specimen configuration D and the random manner of delamination growth

observed for this configuration also reflect the scatter observed in monotonic tests. It is believed

11



that this scatter is related to the low transverse tension strength of the surface 90 ° skin ply as

pointed out in Reference 3. This large variability has also been found in 90 ° flexural fatigue tests.

Finally, it can be concluded that when designing for bending stiffness, the skin and flange stacking

sequences with the 90 ° plies located as far away from the bondline as possible should be the most

durable in terms of matrix cracking and delamination formation and growth.
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Table 1--Laminate characteristics.

Lay-up Skin/Flange Thickness, mm Bending Stiffness Dll, Nm

S 1 [45/-45/0/0/45/90/-45]s

$3 [90/45/0/0/-45/45/-45/90]s

F 1 [45/90/-45/0/90]s

2.8 112

3.0 117

2.0 22.5

Configuration A = S 1 + F1
Configuration D = $3 + F1

Table 2--IM6/3501-6 unidirectional graphite/epoxy tape material properties.

Ell, GPa E22, GPa Gl2, GPa v12

144.8 9.7 5.2 0.3

Table 3--Photographic schedule.

Photograph taken every N cycle

Between Cycles N1 and N2

N1 N2

100

1 000

2 000

5 000

10 000

20 000

50 000

100 000

1 100

100 10 000

10 000 20 000

20 000 50 000

50 000 100 000

100 000 300 000

300 000 700 000

700 000 1 000 000

13



J
_ Frame or stiffener

/ Flange
Tip of flange

Bondline Skin

) /_ Moment) _Transverse shear

Failure initiation

Fig. l--Illustradon of frame/skin interface.
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Fig. 2--Four-point bending specimen configuration and test set-up.
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Ply Waviness Flange ply

Fig. 3--Side view of a specimen of configuration D showing ply waviness
and flange ply drops.

90° Surface ply orientation
Configuration D Position 4 Position 2

Position 3 Position 1 45 ° Surface ply orientation

Configuration A

Fig. 4----Four-point bending specimen with crack locations and surface ply orientations.
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Fig. 5--Three-point bend rig with specimen in place.
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Fig. 6---Maximum cyclic load as a function of the number of cycles to matrix cracking and
subsequent delamination onset for configuration A.
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Fig. 7--Typical damage patterns in specimens of configuration A.
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Delamination Matrix cracks

Fig. 8--Side view of a failed specimen of configuration A at a load level of 80% of P,,t

showing a type "B" delamination between skin and flange at the bondline at comer 2.

Matrix crack Delamination Matrix crack branch

Fig. 9--Side view of a failed specimen of configuration A at a load level of 80% of P,,t

showing a type "P" delamination in the 900/45 ° flange interface at comer 4.
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Fig. 1 l--Delamination length versus number of cycles for specimen A14 at 80% of Pnl.
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Fig. 12--Delamination length versus number of cycles for specimen A 12 at 70% of Pnl.
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Fig. 13--Delamination length versus number of cycles for specimen A15 at 70% of Pnl.
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Fig. 14---Delamination length versus number of cycles for specimen A8 at 60% of Pnl.
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Fig. 15--Delamination length versus number of cycles for specimen A 19 at 60% of Pnl.
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Fig. 16---Delamination length versus number of cycles for specimen A4 at 50% of Pnl.
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Fig. 17--Delaminadon length versus number of cycles for specimen A20 at 50% of Pnl.
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Fig. 19--Maximum cyclic load as a function of the number of cycles to matrix cracking onset for
configuration D.
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Fig. 23--Delamination length versus number of cycles for specimen D 14 at 80% of PnL
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Fig. 24--Delamination length versus number of cycles for specimen DI5 at 80% of Pnl.
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Fig. 25--Delamination length versus number of cycles for specimen D16 at 80% of PnL
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Fig. 26--Delamination length versus number of cycles for specimen D17 at 80% of Pnl.
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Fig. 27--Delamination length versus number of cycles for specimen D8 at 70% of Pnl.
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Fig. 28--Delamination length versus number of cycles for specimen D 11 at 70% of Pnl.
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Fig. 29--Delamination length versus number of cycles for specimen D 12 at 70% of Pnl.
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Fig. 30--Delamination length versus number of cycles for specimen D6 at 60% of Pnl.
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Fig. 31--Delaminafion length versus number of cycles for specimen D4 at 50% of Pnl.

1500

1250

1000

Pmax, N 750

500

250

,r,
Lj ¸

©

• ©

• Configuration A

(3 Configuration D

........ I , ....... I , • ,,,,1,1 • • |ll|LiI • i , ,,,,,I

1 0° 1 01 1 02 1 03 1 04 1 05

N, Cycles

_ f=5Hz
_ R=0.1
L

©

I I 11111"l .... IIII

1 06 1 07

Fig. 32--Comparison of the maximum cyclic load as a function of the number of cycles to
matrix crack onset.

32



1500

1250

1000

Pmax, N 750

500

25O

f=5Hz

R=0.1

O ©

000

0

• Configuration A

O Configuration D

I I i IIIIII ........ I ........ I ........ I ........ I ........ I .......

1 0° 1 01 1 02 1 0 3 1 0 4 1 05 1 06 1 07

N, Cycles

Fig. 33--Comparison of the maximum cyclic load as a function of the number of cycles to
delamination onset once a matrix crack is present.
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